หน้าแรก > คำถาม
คำถาม
เส้นรอบวงของโลกมีความยาวเท่าไหร่?
อยากทราบความยาวเส้นรอบวงของโลกและวิธีการวัดความยาวนั้น
วิทยาศาสตร์ 1/10/51 โพสต์โดย Angkrit
คำตอบ
1 จาก 7
โลก (Earth) เป็นดาวเคราะห์ที่อยู่ห่างจากดวงอาทิตย์เป็นลำดับที่สาม โดยโลกเป็นดาวเคราะห์หินขนาดใหญ่ที่สุดในระบบสุริยะ ดาวเคราะห์โลกถือกำเนิดขึ้นเมื่อประมาณ 4,570 ล้าน (4.57×109) ปีก่อน และหลังจากนั้นไม่นานนัก ดวงจันทร์ ซึ่งเป็นดาวบริวารเพียงดวงเดียวของโลกก็ถือกำเนิดตามมา โลก มีลักษณะเป็นทรงวงรี โดย ในแนวดิ่งเส้นผ่าศูนย์กลางยาว 12,711 กม. ในแนวนอน ยาว 12,755 กม. ต่างกัน 44 กม. มีพื้นน้ำ 3 ส่วน หรือ 71% และมีพื้นดิน 1 ส่วน หรือ 29 % แกนโลกจะเอียง 23.5 องศา
และโลกเป็นดาวเคราะห์เพียงดวงเดียวที่วิทยาศาสตร์สมัยใหม่ยืนยันได้ว่ามีสิ่งมีชีวิตอาศัยอยู่  สิ่งมีชีวิตทรงภูมิปัญญาที่ครองโลกคือ มนุษย์
1/10/51 โพสต์โดย Numthon
2 จาก 7
เพิ่มเติมครับ วิธีวัดความยาวเส้นรอบวงคือ ไพท์คุณเส้นผ่านศูนย์กลาง ครับ
1/10/51 โพสต์โดย Numthon
3 จาก 7
แนวคิดในการวัดวัดขนาดของโลกพัฒนาขั้นจากความคิดว่าโลกกลม อีราโธสทีนิส ได้ทำการวัดมิติของโลกโดยตรง ด้วยวิธีการที่เรียกว่า คณิตดาราศาสตร์(เก็บข้อมูลจากการวัดสถานที่จริง) และนักดาราศาสตร์สามารถคำนวณ ได้ว่าเส้นผ่าศูนย์กลางของโลกตามระนาบศูนย์สูตรจะยาว 21,757 กิโลเมตร เส้นผ่าศูนย์กลางตามระนาบขั้วโลกยาว 17,214 กิโลกเมตร สั้นกว่ากัน 43 กิโลเมตร นำมาคำนวณเป็นอัตราส่วนรีแป้นหรือการแบนที่ขั้วโลก ได้จากสมการ

ความรีแป้น = เส้นผ่าศูนย์กลางแกนยาว - เส้นผ่าศูนย์กลางแกนสั้น / เส้นผ่าศูนย์กลางแกนยาว
= (12,757 - 12714 ) / 12757 = (7,927 - 7,900) / 7,927
= 43/12,757 = 27/7,927
= 1/296.67 = 1/293.59
สามารถคำนวณเส้นรอบวงได้ดังนี้

เส้นรอบวงตามแนวศูนย์สูตร = 2Pir = 2 X 22/7 X 12,757 / 2
= 40,093.43 กิโลเมตร

เส้นรอบวงตามแนวเมริเดียน = 2Pir = 2 X 22/7 X 12,714/ 2
= 39,958.29 กิโลเมตร
การวัดมิตของโลกโดยตรง ด้วยวิธีการคณิตดาราศาสตร์
อิราโธสทีนิส(บรรณารักษ์ห้องสมุดเมืองอเล็กซานเดรีย) สังเกตพบว่าที่เมืองไซอีนีในประเทศอิยิปต์ ตั้งอยู่ริมฝั่งแม่น้ำไนท์ และอยู่ใกล้เส้นทรอปิคออฟแคนเซอร์ (23.5 องศา เหนือ)ดวงอาทิตย์เที่ยงวันในวันที่ 21 มิถุนายนของทุกปี จะส่องแสงถึงก้นบ่อ แสดงว่าแสงอาทิตย์ตั้งได้ฉากกับพื้นโลก(เพราะบ่อจะต้องตั้งได้ฉากกับผิวโลก) ณ เมืองไซอีนี คือตั้งฉากที่ 23.5 องศา เหนือ นั้นเอง เขาจึงทำการวัดมุมสูงของดวงอาทิตย์ตอนเที่ยงวันที่เมืองอเล็กซานเดรีย ในวันเดียวกัน และพบว่า ดวงอาทิตย์ตอนเที่ยงวันอยู่ห่างจากจุดศูนย์กลางท้องฟ้า(Zenith)ไปทางใต้เป็น มุม 7 องศา 12 ลิปดา จากความสัมพันธ์เชิงเลขาคณิตเขาพิสูจน์ได้ว่า เมืองอเล็กซานเดรียกับเมืองไซอีนี อยู่ห่างกันเป็นค่าเชิงมุม 7 องศา 12 ลิปดา เช่นกัน และเขาพบว่าเมืองทั้งสองอยู่ห่างกัน 5,000 สเตเดีย ดังนั้น อีราโธสทีนิส จึงมีข้อมูลเพียงพอที่จะคำนวณเส้นรอบวงของโลก ได้ดังนี้
ระยะเชิงมุมระหว่างเมืองทั้งสอง 7 องศา 12 ลิปดา เท่ากับระยะเชิงเส้น 5,000 สเตเดีย
ระยะเชิงมุมรอบโลก 360 องศา เท่ากับระยะเชิงเส้น 5,000 X 360 / 7 องศา 12 ลิปดา
เพราะฉะนั้น เส้นรอบวงของโลก = 5,000 X 50 องศา 00 ลิปดา = 250,000 สเตเดีย

* 1 สเตเดีย = 185 เมตร ฉะนั้นเส้นรอบวงของโลกตามการคำนวณของอิราโธสทีนิส จึงยาว 250,000 X 185 / 1,000 = 46,250 กิโลเมตร ซึ่งผิดจากความเป็นจริง เพราะเส้นรอบวงของโลกที่แท้จริง = 40,040 กิโลเมตร หลักการและวิธีการที่อิราโธสทีนิสใช้วัดเส้นรอบวงของโลกเป็นสิ่งที่ถูกต้อง ความคลาดเคลื่อนที่เกิดขึ้นน่าจะมาจาก 1. เครื่องมือวัดมุมหยาบและคลาดเคลื่น 2.เมืองอเล็กซานเดรียและไซอีนีไม่ได้อยู่ห่างกัน 5,000 สเตเดีย 3. เมืองทั้งสองไม่ได้อยู่บนเมริเดียนเดียวกัน เวลเที่ยงวันจึงไม่ตรงกัน 4. เมืองไซอีนีไม่ได้อยู่ละติจูดจริงที่ 23.5 องศาเหนือจริง
1/10/51 โพสต์โดย น้องวุฒิน่ารัก
4 จาก 7
กว่าสองพันปีมาแล้วที่ "อีราโทสทีเนส" (Eratosthenes) ปราชญ์ชาวกรีกผู้มีชีวิตอยู่ระหว่างปี 276-194 ก่อนคริสตกาล ได้คำนวณหาเส้นรอบวงของโลก ในแนวเหนือ-ใต้ ด้วยหลักการว่า แสงอาทิตย์ส่องมายังทุกส่วนบนโลก เป็นเส้นตรงเหมือนกันหมด แต่เนื่องจากโลกเป็นทรงกลมขนาดใหญ่ ทำให้มุมตกกระทบในแต่ละพื้นที่ ไม่เท่ากัน
     
      หากสถานที่ 2 แห่งอยู่ในตำแหน่งเหนือ-ใต้บนเส้นลองจิจูดเดียวกัน ก็สามารถคำนวณหาเส้นรอบวงของโลกได้ด้วยสูตร...
     
     
เส้นรอบวงของโลก = (ระยะทางระหว่างเมือง / ผลต่างมุมตกกระทบของดวงอาทิตย์) x 360
     

     
      ทั้งนี้ ขณะปฏิบัติหน้าที่เป็นหัวหน้าห้องสมุด อยู่ที่เมืองอเล็กซานเดรีย (Alexandria) ในยุคปโตเลมีที่ 3 เขาได้ยินข่าวว่า ในวันครีษมายัน (Summer Solstice)  ซึ่งเป็นที่ดวงอาทิตย์ตั้งฉากกับโลก ที่ละติจูด 23.5 องศาเหนือ ซึ่งทำให้กลางวันยาวที่สุดนั้น ที่เมืองไซอีน (Syene) หรือเมืองอัสวัน (Aswan) ในอียิปต์ปัจจุบัน ดวงอาทิตย์จะส่องแสงลงไปยังก้นบ่อน้ำตอนเที่ยงตรง ขณะที่เวลาเดียวกันนี้ ที่เมืองอเล็กซานเดรียดวงอาทิตย์ทำมุม 7 องศากว่าๆ กับแท่งเสาหินโอเบริสก์ (Obelisk)
     
      อีราโทสทีเนสจึงได้พิสูจน์ว่า ดวงอาทิตย์ส่องไปยังก้นบ่อ ที่เมืองไซอีนตอนเที่ยงตรงจริงหรือไม่ และว่าจ้างให้คนเดินเท้า เพื่อวัดระยะทางระหว่างเมืองอเล็กซานเดรีย และเมืองไซอีนแบบก้าวต่อก้าว ซึ่งได้ระยะทาง 5,000 สตาเดีย ตามหน่วยวัดของกรีกโบราณ
     
      ส่วนผลต่าง 7.2 องศา ประมาณได้เท่ากับ 1/50 ของ 360 องศา
      จึงคำนวณเส้นรอบวงของโลกออกมา ได้เท่ากับ 250,000 สตาเดีย
     
      ทั้งนี้เชื่อกันว่า 1 สตาเดียเท่ากับ 185 เมตร ดังนั้นระยะทางที่เขาคำนวณได้ น่าจะประมาณ 46,250 กิโลเมตร ซึ่งมีความคลาดเคลื่อน 14% เมื่อเทียบกับข้อมูล ที่วัดด้วยดาวเทียมจากองค์การบริหารการบินและอวกาศสหรัฐฯ (นาซา)
     
      แม้ว่า วิธีคำนวณของอีราโทสจะมีความคลาดเคลื่อน ไปจากข้อมูลที่วัดได้ด้วยเทคโนโลยีสมัยใหม่ แต่ก็เป็นหลักการ ที่ทำให้เราเข้าใจโลกและดาราศาสตร์ได้อย่างดี

http://www.oknation.net/blog/wgis/2008/09/24/entry-1
1/10/51 โพสต์โดย lithidet
5 จาก 7
ขอนับถือ ทุกท่านที่ตอบครับ

ที่นี่คือแหล่งความรู้จริงๆ
1/10/51 โพสต์โดย Tanu
6 จาก 7
ขอขอบคุณเจ้าของกระทู้ ทุกคนที่ตอบ
และคุณNumthonเป็นอย่างมากนะครับ
กำลังหาเส้นผ่านศูนย์กลางแนวดิ่งแนวนอนแล้วก็ผลต่างอยู่พอดีเลยครับ
กูรูนี่มีครบทุกอย่างจริงๆเลยนะครับ ^_^
LOVE GURU
18/11/52 โพสต์โดย vanhelsing
7 จาก 7
เส้น
17/1/57 โพสต์โดย ยังไม่มีชื่อเล่น
นอกจากนี้คุณอาจสนใจ
โลกมีรัศมีประมาณ 6.37*10 ยกกำลัง 6 เมตร จงหา .ก เส้นรอบวงของโลกในหน่วยกิโลเมตร ข.พื้นที่ผวของโลกในหน่วยตารางกิโลดมตร
ขอสูตรหารัศมีจากเส้นรอบวง โดยมีแค่มุมมาให้ 45°
เส้นรอบวงของ 5 ไร่เท่ากับ
เส้นศูนย์สูตรยาวเท่าไหร่?
ถูกไหม ช่วยดูให้หน่อย
เข้าสู่ระบบ
ดู กูรู ใน: โทรศัพท์มือถือ | คลาสสิก
©2014 Google - นโยบายส่วนบุคคล - ผู้ช่วยกูรู